A Short Guide to Understanding NeurIPS 2025 Through Three Key Reports

Introduction

NeurIPS (Neural Information Processing Systems) 2025 brought together the global machine learning community for its thirty ninth annual meeting. It represents both continuity and change in the world’s premier machine learning conference. Held December 2 to 7 in San Diego, with a simultaneous secondary site in Mexico City, the conference drew enormous attention from researchers across academia, industry, and policy. The scale was striking. There were more than 21,575 submissions and over 5,200 accepted papers, which placed the acceptance rate at about 24.5 percent. With such breadth, NeurIPS 2025 offered a detailed look at the current state of AI research and the questions shaping its future.

Why I Follow the Conference

Even though my senior year has been filled with college applications and demanding coursework, I continue to follow NeurIPS closely because it connects directly to my future interests in computational linguistics and NLP. Reading every paper is unrealistic, but understanding the broader themes is still possible. For students or early researchers who want to stay informed without diving into thousands of pages, the following three references are especially helpful.

References:

  1. NeurIPS 2025: A Guide to Key Papers, Trends & Stats (Intuition Labs)
  2. Trends in AI at NeurIPS 2025 (Medium)
  3. At AI’s biggest gathering, its inner workings remain a mystery (NBC News)

Executive Summary of the Three Reports

1. Intuition Labs: Key Papers, Trends, and Statistics

The Intuition Labs summary of NeurIPS 2025 is a detailed, professionally structured report that provides a comprehensive overview of the conference. It opens with an Executive Summary highlighting key statistics, trends, awards, and societal themes, followed by sections on Introduction and Background, NeurIPS 2025 Organization and Scope (covering dates, venues, scale, and comparisons to prior years), and Submission and Review Process (with subsections on statistics, responsible practices, and ethics).

The report then delves into the core content through Technical Program Highlights (key themes, notable papers, and interdisciplinary bridging), Community and Social Aspects (affinity events, workshops, industry involvement, and conference life), Data and Evidence: Trends Analysis, Case Studies and Examples (including the best paper on gated attention and an invited talk panel), Implications and Future Directions, and a concluding section that reflects on the event’s significance. This logical flow, from context and logistics to technical depth, community, evidence, specifics, and forward-looking insights, makes it an ideal reference for understanding the conference’s breadth and maturation of AI research. It is a helpful summary for readers who want both numbers and high level insights.

2. Medium: Trends in AI at NeurIPS 2025

This article highlights key trends observed at NeurIPS 2025 through workshops, signaling AI’s maturation beyond text-based models. Major themes include embodied AI in physical/biological realms (e.g., animal communication via bioacoustics, health applications with regulatory focus, robotic world models, spatial reasoning, brain-body foundations, and urban/infrastructure optimization); reliability and interpretability (robustness against unreliable data, regulatable designs, mechanistic interpretability of model internals, and lifecycle-aware LLM evaluations); advanced reasoning and agents (multi-turn interactions, unified language-agent-world models, continual updates, mathematical/logical reasoning, and scientific discovery); and core theoretical advancements (optimization dynamics, structured graphs, and causality).

The author concludes that AI is evolving into situated ecosystems integrating biology, cities, and agents, prioritizing structure, geometry, causality, and protective policies alongside innovation, rather than pure scaling.

3. NBC News: The Challenge of Understanding AI Systems

NBC News focuses on a different but equally important issue. Even with rapid performance gains, researchers remain unsure about what drives model behavior. Many noted that interpretability is far behind capability growth. The article describes concerns about the lack of clear causal explanations for model outputs and the difficulty of ensuring safety when internal processes are not fully understood. Several researchers emphasized that the field needs better tools for understanding neural networks before deploying them widely. This tension between rapid advancement and limited interpretability shaped many of the conversations at NeurIPS 2025.

For Further Exploration

For readers who want to explore the conference directly, the NeurIPS 2025 website provides access to papers, schedules, and workshop materials:
https://neurips.cc/Conferences/2025

— Andrew

4,361 hits

Latest Applications of NLP to Recommender Systems at RecSys 2025

Introduction

The ACM Conference on Recommender Systems (RecSys) 2025 took place in Prague, Czech Republic, from September 22–26, 2025. The event brought together researchers and practitioners from academia and industry to present their latest findings and explore new trends in building recommendation technologies.

This year, one of the most exciting themes was the growing overlap between natural language processing (NLP) and recommender systems. Large language models (LLMs), semantic clustering, and text-based personalization appeared everywhere, showing how recommender systems are now drawing heavily on computational linguistics. As someone who has been learning more about NLP myself, it is really cool to see how the research world is pushing these ideas forward.


Paper Highlights

A Language Model-Based Playlist Generation Recommender System

Paper Link

Relevance:
Uses language models to generate playlists by creating semantic clusters from text embeddings of playlist titles and track metadata. This directly applies NLP for thematic coherence and semantic similarity in music recommendations.

Abstract:
The title of a playlist often reflects an intended mood or theme, allowing creators to easily locate their content and enabling other users to discover music that matches specific situations and needs. This work presents a novel approach to playlist generation using language models to leverage the thematic coherence between a playlist title and its tracks. Our method consists in creating semantic clusters from text embeddings, followed by fine-tuning a transformer model on these thematic clusters. Playlists are then generated considering the cosine similarity scores between known and unknown titles and applying a voting mechanism. Performance evaluation, combining quantitative and qualitative metrics, demonstrates that using the playlist title as a seed provides useful recommendations, even in a zero-shot scenario.


An Off-Policy Learning Approach for Steering Sentence Generation towards Personalization

Paper Link

Relevance:
Focuses on off-policy learning to guide LLM-based sentence generation for personalized recommendations. Involves NLP tasks like controlled text generation and personalization via language model fine-tuning.

Abstract:
We study the problem of personalizing the output of a large language model (LLM) by training on logged bandit feedback (e.g., personalizing movie descriptions based on likes). While one may naively treat this as a standard off-policy contextual bandit problem, the large action space and the large parameter space make naive applications of off-policy learning (OPL) infeasible. We overcome this challenge by learning a prompt policy for a frozen LLM that has only a modest number of parameters. The proposed Direct Sentence Off-policy gradient (DSO) effectively propagates the gradient to the prompt policy space by leveraging the smoothness and overlap in the sentence space. Consequently, DSO substantially reduces variance while also suppressing bias. Empirical results on our newly established suite of benchmarks, called OfflinePrompts, demonstrate the effectiveness of the proposed approach in generating personalized descriptions for movie recommendations, particularly when the number of candidate prompts and reward noise are large.


Enhancing Sequential Recommender with Large Language Models for Joint Video and Comment Recommendation

Paper Link

Relevance:
Integrates LLMs to enhance sequential recommendations by processing video content and user comments. Relies on NLP for joint modeling of multimodal text (like comments) and semantic user preferences.

Abstract:
Nowadays, reading or writing comments on captivating videos has emerged as a critical part of the viewing experience on online video platforms. However, existing recommender systems primarily focus on users’ interaction behaviors with videos, neglecting comment content and interaction in user preference modeling. In this paper, we propose a novel recommendation approach called LSVCR that utilizes user interaction histories with both videos and comments to jointly perform personalized video and comment recommendation. Specifically, our approach comprises two key components: sequential recommendation (SR) model and supplemental large language model (LLM) recommender. The SR model functions as the primary recommendation backbone (retained in deployment) of our method for efficient user preference modeling. Concurrently, we employ a LLM as the supplemental recommender (discarded in deployment) to better capture underlying user preferences derived from heterogeneous interaction behaviors. In order to integrate the strengths of the SR model and the supplemental LLM recommender, we introduce a two-stage training paradigm. The first stage, personalized preference alignment, aims to align the preference representations from both components, thereby enhancing the semantics of the SR model. The second stage, recommendation-oriented fine-tuning, involves fine-tuning the alignment-enhanced SR model according to specific objectives. Extensive experiments in both video and comment recommendation tasks demonstrate the effectiveness of LSVCR. Moreover, online A/B testing on KuaiShou platform verifies the practical benefits of our approach. In particular, we attain a cumulative gain of 4.13% in comment watch time.


LLM-RecG: A Semantic Bias-Aware Framework for Zero-Shot Sequential Recommendation

Paper Link

Relevance:
Addresses domain semantic bias in LLMs for cross-domain recommendations using generalization losses to align item embeddings. Employs NLP techniques like pretrained representations and semantic alignment to mitigate vocabulary differences across domains.

Abstract:
Zero-shot cross-domain sequential recommendation (ZCDSR) enables predictions in unseen domains without additional training or fine-tuning, addressing the limitations of traditional models in sparse data environments. Recent advancements in large language models (LLMs) have significantly enhanced ZCDSR by facilitating cross-domain knowledge transfer through rich, pretrained representations. Despite this progress, domain semantic bias arising from differences in vocabulary and content focus between domains remains a persistent challenge, leading to misaligned item embeddings and reduced generalization across domains.

To address this, we propose a novel semantic bias-aware framework that enhances LLM-based ZCDSR by improving cross-domain alignment at both the item and sequential levels. At the item level, we introduce a generalization loss that aligns the embeddings of items across domains (inter-domain compactness), while preserving the unique characteristics of each item within its own domain (intra-domain diversity). This ensures that item embeddings can be transferred effectively between domains without collapsing into overly generic or uniform representations. At the sequential level, we develop a method to transfer user behavioral patterns by clustering source domain user sequences and applying attention-based aggregation during target domain inference. We dynamically adapt user embeddings to unseen domains, enabling effective zero-shot recommendations without requiring target-domain interactions.

Extensive experiments across multiple datasets and domains demonstrate that our framework significantly enhances the performance of sequential recommendation models on the ZCDSR task. By addressing domain bias and improving the transfer of sequential patterns, our method offers a scalable and robust solution for better knowledge transfer, enabling improved zero-shot recommendations across domains.


Trends Observed

These papers reflect a broader trend at RecSys 2025 toward hybrid NLP-RecSys approaches, with LLMs enabling better handling of textual side information (like reviews, titles, and comments) for cold-start problems and cross-domain generalization. This aligns with recent surveys on LLMs in recommender systems, which note improvements in semantic understanding over traditional embeddings.


Final Thoughts

As a high school student interested in computational linguistics, reading about these papers feels like peeking into the future. I used to think of recommender systems as black boxes that just show you more videos or songs you might like. But at RecSys 2025, it is clear the field is moving toward systems that actually “understand” language and context, not just click patterns.

For me, that is inspiring. It means the skills I am learning right now, from studying embeddings to experimenting with sentiment analysis, could actually be part of real-world systems that people use every day. It also shows how much crossover there is between disciplines. You can be into linguistics, AI, and even user experience design, and still find a place in recommender system research.

Seeing these studies also makes me think about the responsibility that comes with more powerful recommendation technology. If models are becoming better at predicting our tastes, we have to be careful about bias, fairness, and privacy. This is why conferences like RecSys are so valuable. They are a chance for researchers to share ideas, critique each other’s work, and build a better tech future together.

— Andrew

4,361 hits

Attending SCiL 2025: My First In-Person Computational Linguistics Conference at the University of Oregon

This July, I had the amazing opportunity to attend the 2025 Society for Computation in Linguistics (SCiL) conference, held at the University of Oregon in Eugene from July 18 to 20. This wasn’t just my first academic conference in person. It was also my first time attending a conference where I was (surprisingly) the only high school student in the room.


Road Trip to Eugene and My Badge Moment

My family and I made the drive from Seattle to Eugene, a nearly 300-mile road trip along I-5. I was super excited (and a little nervous) to be attending a professional conference alongside professors, postdocs, and graduate students.

When I checked in, I got my conference badge and immediately noticed something funny. My badge just said “Andrew Li,” with no school or organization listed, while everyone else had theirs printed with their university or research institute. I guess Redmond High School isn’t in their system yet!


The Crowd: Grad Students, Professors, and Me

The SCiL crowd was mostly made up of college professors and graduate students. At first, I felt a little out of place sitting in rooms full of experts discussing topics in areas such as pragmatics and large language models. But once the sessions started, I realized that even as a student just starting out in the field, there was so much I could follow and even more that I wanted to learn.

The conference covered a wide range of topics, all tied together by a focus on computational modeling in linguistics. You can find the full conference schedule here.

I was especially drawn to Dr. Malihe Alikhani‘s keynote presentation “Theory of Mind in Generative Models: From Uncertainty to Shared Meaning“. Her talk explored how generative models can effectively facilitate communicative grounding by incorporating theory of mind alongside uncertainty and human feedback. What stood out to me most was the idea that positive friction can be intentionally built into conversational systems so that it encourages contemplative thinking such as reflection on uncertain assumptions by both the users and AI systems. I was also fascinated by how generative
models embody core mechanisms of pragmatic reasoning, offering linguists and cognitive
scientists both methodological challenges and opportunities to question how computational
systems reflect and shape our understanding of meaning and interaction.


Networking and New Connections

While I didn’t get the chance to meet Prof. Jonathan Dunn in person as planned (he’s teaching “Computational Construction Grammar” at the LSA 2025 Summer Institute from July 24 through August 7 and won’t arrive until July 23), I still made some great new connections.

One of them was Andrew Liu, a graduate student at the University of Toronto. We chatted about his project, “Similarity, Transformation, and the Newly Found Invariance of Influence Functions,” which he’s presenting during the poster session. He was super friendly and shared valuable advice about studying and doing research in computational linguistics and NLP. Here’s his LinkedIn profile if you’d like to check out his work.

Talking with grad students made me realize how wide the field of computational linguistics really is. Everyone had a different background — some came from linguistics, others from computer science or cognitive science — but they were all united by a shared passion for understanding language through computation.


Final Thoughts

Attending SCiL 2025 was eye-opening. Even though I was probably the youngest person there, I felt inspired, welcomed, and challenged in the best way. It confirmed my passion for computational linguistics /NLP and reminded me how much more I want to learn.

If you’re a high school student curious about computational linguistics/NLP, don’t be intimidated by professional conferences. Dive in, listen closely, ask questions, and you might be surprised by how much you take away.

— Andrew

Blog at WordPress.com.

Up ↑