The AI Gap: How Socioeconomic Status Shapes Language Technology Use — A Perspective from Best Social Impact Paper at ACL 2025

The 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025) recently finished in Vienna, Austria from July 27 to August 1. The conference announced a few awards, one of which is Best Social Impact Paper. This award was given to two papers:

  1. AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset (by Charles Nimo et al.)
  2. The AI Gap: How Socioeconomic Status Affects Language Technology Interactions (by Elisa Bassignana, Amanda Cercas Curry, and Dirk Hovy).

In this blog post, I’ll talk about the second paper and share the findings from the paper and my thoughts on the topic. You can read the full paper here: https://aclanthology.org/2025.acl-long.914.pdf

What the Paper is About

This paper investigates how socioeconomic status (SES) influences interactions with language technologies, particularly large language models (LLMs) like ChatGPT, highlighting an emerging “AI Gap” that could exacerbate social inequalities. Drawing from the Technology Acceptance Model and prior work on digital divides, the authors argue that SES shapes technology adoption through factors like access, digital literacy, and linguistic habits, potentially biasing LLMs toward higher-SES patterns and underrepresenting lower-SES users.

Methods

The study surveys 1,000 English-speaking participants from the UK and US via Prolific, stratified by self-reported SES using the MacArthur scale (binned as low: 1-3, middle: 4-7, upper: 8-10). It collects sociodemographic data, usage patterns of language technologies (e.g., spell checkers, AI chatbots), and 6,482 real prompts from prior LLM interactions. Analysis includes statistical tests (e.g., chi-square for usage differences), linguistic metrics (e.g., prompt length, concreteness via Brysbaert et al.’s word ratings), topic modeling (using embeddings, UMAP, HDBSCAN, and GPT-4 for cluster descriptions), and markers of anthropomorphism (e.g., phatic expressions like “hi” and politeness markers like “thank you”).

Key Findings

  • Usage Patterns: Higher-SES individuals access more devices daily (e.g., laptops, smartwatches) and use LLMs more frequently (e.g., daily vs. rarely for lower SES). They employ LLMs for work/education (e.g., coding, data analysis, writing) and technical contexts, while lower-SES users favor entertainment, brainstorming, and general knowledge queries. Statistically significant differences exist in frequency (p < 0.001), contexts (p < 0.001), and tasks (p < 0.001).
  • Linguistic Differences in Prompts: Higher-SES prompts are shorter (avg. 18.4 words vs. 27.0 for low SES; p < 0.05) and more abstract (concreteness score: 2.57 vs. 2.66; p < 0.05). Lower-SES prompts show higher anthropomorphism (e.g., more phatic expressions) and concrete language. A bag-of-words classifier distinguishes SES groups (Macro-F1 39.25 vs. baseline 25.02).
  • Topics and Framing: Common topics (e.g., translation, mental health, medical advice, writing, text editing, finance, job, food) appear across groups, but framing varies—e.g., lower SES seeks debt reduction or low-skill jobs; higher SES focuses on investments, travel itineraries, or inclusivity. About 45% of prompts resemble search-engine queries, suggesting LLMs are replacing traditional searches.
  • User Perceptions: Trends indicate lower-SES users anthropomorphize more (e.g., metaphorical verbs like “ask”), while higher-SES use jargon (e.g., “generate”), though not statistically significant.

Discussion and Implications

The findings underscore how SES stratifies LLM use, with higher-SES benefiting more in professional/educational contexts, potentially widening inequalities as LLMs optimize for their patterns. Benchmarks may overlook lower-SES styles, leading to biases. The authors advocate the development of inclusive NLP technologies to accommodate different SES needs and habitus and mitigate the existing AI Gap.

Limitations and Ethics

Limited to Prolific crowdworkers (skewed middle/low SES, tech-savvy), subjective SES measures, and potential LLM-generated responses. Ethical compliance includes GDPR anonymity, opt-outs, and fair compensation (£9/hour).

Overall, the paper reveals SES-driven disparities in technology interactions, urging NLP development to address linguistic and habitual differences for equitable access and reduced digital divides.

My Takeaway

As a high school student who spends a lot of time thinking about fairness in AI, I find this paper important because it reminds us that bias is not just about language or culture, it can also be tied to socioeconomic status. This is something I had not thought much about before. If AI systems are trained mostly on data from higher SES groups, they might misunderstand or underperform for people from lower SES backgrounds. That could affect how well people can use AI for education, job searching, or even just getting accurate information online.

For me, the takeaway is that AI researchers need to test their models with SES diversity in mind, just like they do with gender or language diversity. And as someone interested in computational linguistics, it is inspiring to see that work like this is getting recognized with awards at ACL.

— Andrew

Blog at WordPress.com.

Up ↑